Concepto de Coordenadas Polares

Los ejes polares o también conocidos como métodos polares son un procedimiento de coordenadas bidimensional en el que cada espacio del plano se establece por un recorrido y un ángulo. Este sistema es considerablemente manejado en física y trigonometría. El término actual de coordenadas polares se atribuye a Gregorio Fontana y fue usado por los escritores italianos del siglo XVIII.

Coordenadas Polares

Asimismo, se puede mencionar que la palabra surge por primera vez en inglés en la traducción del año 1816 formalizada por George Peacock del Tratado del cálculo diferencial y del cálculo integral de Sylvestre François Lacroix, mientras que Alexis Clairaut fue el primero que pensó en extender las coordenadas polares a tres dimensiones.

Para explicar de manera más precisa este tema, como método de referencia se toma: (a) un punto O del plano, al que se llama origen o polo; y (b) una recta dirigida (o rayo, o segmento OL) que pasa por O, conocida como eje polar (semejante al eje x del método cartesiano). Con este método de referencia y un mecanismo de medida métrica (para poder determinar distancias entre cada par de puntos del plano), todo punto P del plano pertenece a un par regulado (r, θ) donde r es el recorrido de P al principio y θ es el ángulo desarrollado entre el eje polar y la recta dirigida OP que va de O a P. El valor θ asciende en sentido antihorario y decrece en sentido horario. El recorrido r (r ≥ 0) se conoce como la «coordenada radial» o «radio vector», mientras que el ángulo es la «coordenada angular» o «ángulo polar».

Por otra parte, en el caso del origen, O, el valor de r es cero, pero el valor de θ es indeterminado. Se dice que en ocasiones se adopta la convención de personificar el origen por (0,0º).

Ahora bien, es importante indicar que los conceptos de ángulo y radio ya fueron manejados por los pueblos antiguos del primer milenio BCE. El astrónomo Hiparco (190-120 a. C) creó una tabla de funciones de acordes que proporcionan la amplitud de la cuerda para cada ángulo y hay referencias a su uso de coordenadas polares en el establecimiento de visiones estelares. En sobre las espirales, Arquímedes detalla el Espiral de Arquímedes, una función cuyo radio depende del ángulo. La palabra griega, sin embargo, no se desarrolla a un sistema de coordenadas completo.

Existen varias cuentas de la introducción de coordenadas polares como parte de un método formal de coordenadas. La historia completa de la asignatura se detalla con el Profesor de Harvard Julian Lowell Coolidge de coordenadas polares. Por otra parte, Grégoire de Saint-Vincent y Bonaventura Cavalieri introdujo de manera autónoma los conceptos en la mitad del siglo XVII. Saint-Vincent escribió sobre ellos en privado en el año 1625 y publicó su trabajo en el año 1647, mientras que Cavalieri publicó su libro en el año 1635 con una versión corregida que surge en el año 1653. Cavalieri manejó por primera vez las coordenadas polares para solucionar un problema vinculado con el área dentro de un Espiral de Arquímedes. Blaise Pascal maneja posteriormente coordenadas polares para computar la amplitud de arcos parabólicos.

Un punto muy significativo en este tópico, es que las coordenadas polares son de dos dimensiones y por lo tanto se pueden utilizar sólo cuando posiciones de los puntos se localizan en un único plano de dos superficies. Ellos son los más adecuados en cualquier contexto donde el fenómeno estimado es básicamente unido a la dirección y extensión de un punto central.